This module have the class which every representation extends, if you are planning to create a new representation, you must take a inside look into this module.
GenomeBase Class - The base of all chromosome representation
Clone this GenomeBase
Return type: | the clone genome |
---|
Copy the current GenomeBase to ‘g’
Parameter: | g – the destination genome |
---|
This is the reproduction function slot, the crossover. You can change the default crossover method using:
genome.crossover.set(Crossovers.G1DListCrossoverUniform)
Called to evaluate genome
Parameter: | args – this parameters will be passes to the evaluator |
---|
This is the evaluation function slot, you can add a function with the set method:
genome.evaluator.set(eval_func)
Get the Fitness Score of the genome
Return type: | genome fitness score |
---|
Gets an initialization parameter
>>> genome.getParam("rangemax")
100
Parameters: |
|
---|
Get the Raw Score of the genome
Return type: | genome raw score |
---|
This is the initialization function of the genome, you can change the default initializator using the function slot:
genome.initializator.set(Initializators.G1DListInitializatorAllele)
In this example, the initializator Initializators.G1DListInitializatorAllele() will be used to create the initial population.
Called to initialize genome
Parameter: | args – this parameters will be passed to the initializator |
---|
Called to mutate the genome
Parameter: | args – this parameters will be passed to the mutator |
---|
This is the mutator function slot, you can change the default mutator using the slot set function:
genome.mutator.set(Mutators.G1DListMutatorSwap)
Set the initializator params
>>> genome.setParams(rangemin=0, rangemax=100, gauss_mu=0, gauss_sigma=1)
Parameter: | args – this params will saved in every chromosome for genetic op. use |
---|