This is the 2D List representation, this list can carry real numbers or integers or any kind of object, by default, we have genetic operators for integer and real lists, which can be found on the respective modules. This chromosome class extends the GenomeBase.GenomeBase.
Initializator
Initializators.G2DListInitializatorInteger()
The Integer Initializator for G2DList
Mutator
The Swap Mutator for G2DList
Crossover
Crossovers.G2DListCrossoverUniform()
The Uniform Crossover for G2DList
G2DList Class - The 2D List chromosome representation
Inheritance diagram for G2DList.G2DList:
Examples
- The instantiation
>>> genome = G2DList.G2DList(10, 10)- Compare
>>> genome2 = genome1.clone() >>> genome2 == genome1 True- Iteration
>>> for row in genome: >>> print row [1, 3, 4, 1] [7, 5, 3, 4] [9, 0, 1, 2]- Size, slice, get/set, append
>>> len(genome) 3 >>> genome (...) [1, 3, 4, 1] [7, 5, 3, 4] [9, 0, 1, 2] >>> genome[1][2] 3 >>> genome[1] = [666, 666, 666, 666] >>> genome (...) [1, 3, 4, 1] [666, 666, 666, 666] [9, 0, 1, 2] >>> genome[1][1] = 2 (...)
Parameters: |
|
---|
Return a new instace copy of the genome
Return type: | the G2DList clone instance |
---|
Copy genome to ‘g’
>>> genome_origin.copy(genome_destination)
Parameter: | g – the destination G2DList instance |
---|
This is the reproduction function slot, the crossover. You can change the default crossover method using:
genome.crossover.set(Crossovers.G2DListCrossoverSingleHPoint)
Called to evaluate genome
Parameter: | args – this parameters will be passes to the evaluator |
---|
This is the evaluation function slot, you can add a function with the set method:
genome.evaluator.set(eval_func)
Get the Fitness Score of the genome
Return type: | genome fitness score |
---|
Return the specified gene of List
>>> genome.getItem(3, 1)
666
>>> genome[3][1]
Parameters: |
|
---|---|
Return type: | the item at x,y position |
Gets an internal parameter
>>> genome.getParam("rangemax")
100
Note
All the individuals of the population shares this parameters and uses the same instance of this dict.
Parameters: |
|
---|
Get the Raw Score of the genome
Return type: | genome raw score |
---|
Returns a tuple (height, widht)
>>> genome.getSize()
(3, 2)
This is the initialization function of the genome, you can change the default initializator using the function slot:
genome.initializator.set(Initializators.G2DListInitializatorAllele)
In this example, the initializator Initializators.G2DListInitializatorAllele() will be used to create the initial population.
Called to initialize genome
Parameter: | args – this parameters will be passed to the initializator |
---|
Called to mutate the genome
Parameter: | args – this parameters will be passed to the mutator |
---|---|
Return type: | the number of mutations returned by mutation operator |
This is the mutator function slot, you can change the default mutator using the slot set function:
genome.mutator.set(Mutators.G2DListMutatorIntegerGaussian)
Returns a resumed string representation of the Genome
New in version 0.6: The resumeString method.
Set the specified gene of List
>>> genome.setItem(3, 1, 666)
>>> genome[3][1] = 666
Parameters: |
|
---|
Set the internal params
>>> genome.setParams(rangemin=0, rangemax=100, gauss_mu=0, gauss_sigma=1)
Note
All the individuals of the population shares this parameters and uses the same instance of this dict.
Parameter: | args – this params will saved in every chromosome for genetic op. use |
---|